Keeping large foundation models up to date on latest data is inherently expensive. To avoid the prohibitive costs of constantly retraining, it is imperative to continually train these models. This problem is exacerbated by the lack of any large scale continual learning benchmarks or baselines. We introduce the first set of web-scale Time-Continual (TiC) benchmarks for training vision-language models: TiC-DataComp, TiC-YFCC, and TiC-Redcaps. TiC-DataComp, our largest dataset, contains over 12.7B timestamped image-text pairs spanning 9 years (2014-2022). We first use our benchmarks to curate various dynamic evaluations to measure temporal robustness of existing models. We show OpenAI's CLIP (trained on data up to 2020) loses zero-shot accuracy on our curated retrieval task from 2021-2022 compared with more recently trained models in OpenCLIP repository. We then study how to efficiently train models on time-continuous data. We demonstrate that a simple rehearsal-based approach that continues training from the last checkpoint and replays old data reduces compute by when compared to the standard practice of retraining from scratch.

Related readings and updates.

Mixture-of-Experts (MoE) models are crucial for scaling model capacity while controlling inference costs. While integrating MoE into multimodal models like CLIP improves performance, training these models is notoriously challenging and expensive. We propose CLIP-Upcycling (CLIP-UP), an efficient alternative training strategy that converts a pre-trained dense CLIP model into a sparse MoE architecture. Through extensive experimentation with various…
Read more
This paper was accepted to the workshop on Distribution Shifts in NeurIPS 2023. Large-scale training of models has become exceedingly more expensive. In an ever changing world where Petabytes of new data is generated every day, we want to be able to continually train models. In this paper, we create a benchmark for continual large-scale training of CLIP models where the data distribution varies only by time. Compared with traditional continual…
Read more