View publication

Deep neural networks require collecting and annotating large amounts of data to train successfully. In order to alleviate the annotation bottleneck, we propose a novel self-supervised representation learning approach for spatiotemporal features extracted from videos. We introduce Skip-Clip, a method that utilizes temporal coherence in videos, by training a deep model for future clip order ranking conditioned on a context clip as a surrogate objective for video future prediction. We show that features learned using our method are generalizable and transfer strongly to downstream tasks. For action recognition on the UCF101 dataset, we obtain 51.8% improvement over random initialization and outperform models initialized using inflated ImageNet parameters. Skip-Clip also achieves results competitive with state-of-the-art self-supervision methods.

Related readings and updates.

Mixture-of-Experts (MoE) models are crucial for scaling model capacity while controlling inference costs. While integrating MoE into multimodal models like CLIP improves performance, training these models is notoriously challenging and expensive. We propose CLIP-Upcycling (CLIP-UP), an efficient alternative training strategy that converts a pre-trained dense CLIP model into a sparse MoE architecture. Through extensive experimentation with various…
Read more
This paper was accepted at the UniReps Workshop at NeurIPS 2023, and the eLVM Workshop at CVPR 2024. The landscape of publicly available vision foundation models (VFMs), such as CLIP and Segment Anything Model (SAM), is expanding rapidly. VFMs are endowed with distinct capabilities stemming from their pre-training objectives. For instance, CLIP excels in semantic understanding, while SAM specializes in spatial understanding for segmentation. In…
Read more