View publication

Secure aggregation of high-dimensional vectors is a fundamental primitive in federated statistics and learning. A two-server system such as PRIO allows for scalable aggregation of secret-shared vectors. Adversarial clients might try to manipulate the aggregate, so it is important to ensure that each (secret-shared) contribution is well-formed. In this work, we focus on the important and well-studied goal of ensuring that each contribution vector has bounded Euclidean norm. Existing protocols for ensuring bounded-norm contributions either incur a large communication overhead, or only allow for approximate verification of the norm bound. We propose Private Inexpensive Norm Enforcement (PINE): a new protocol that allows exact norm verification with little communication overhead. For high-dimensional vectors, our approach has a communication overhead of a few percent, compared to the 16-32x overhead of previous approaches.

Related readings and updates.

With the rapid expansion in the scale of large language models (LLMs), enabling efficient distributed inference across multiple computing units has become increasingly critical. However, communication overheads from popular distributed inference techniques such as Tensor Parallelism pose a significant challenge to achieve scalability and low latency. Therefore, we introduce a novel optimization technique, Sync-Point Drop (SPD), to reduce…
Read more
Computing the noisy sum of real-valued vectors is an important primitive in differentially private learning and statistics. In private federated learning applications, these vectors are held by client devices, leading to a distributed summation problem. Standard Secure Multiparty Computation (SMC) protocols for this problem are susceptible to poisoning attacks, where a client may have a large influence on the sum, without being detected. In this…
Read more